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ABSTRACT
Most of the popular Big Data analytics tools evolved to adapt their
working environment to extract valuable information from a vast
amount of unstructured data. The ability of data mining techniques
to filter this helpful information from Big Data led to the term ‘Big
Data Mining’. Shifting the scope of data from small-size, structured,
and stable data to huge volume, unstructured, and quickly changing
data brings many data management challenges. Different tools cope
with these challenges in their own way due to their architectural
limitations. There are numerous parameters to take into considera-
tion when choosing the right data management framework based
on the task at hand. In this paper, we present a comprehensive
benchmark for two widely used Big Data analytics tools, namely
Apache Spark and Hadoop MapReduce, on a common data mining
task, i.e., classification. We employ several evaluation metrics to
compare the performance of the benchmarked frameworks, such
as execution time, accuracy, and scalability. These metrics are spe-
cialized to measure the performance for classification task. To the
best of our knowledge, there is no previous study in the litera-
ture that employs all these metrics while taking into consideration
task-specific concerns. We show that Spark is 5 times faster than
MapReduce on training the model. Nevertheless, the performance
of Spark degrades when the input workload gets larger. Scaling the
environment by additional clusters significantly improves the per-
formance of Spark. However, similar enhancement is not observed
in Hadoop. Machine learning utility of MapReduce tend to have
better accuracy scores than that of Spark, like around 2%-3%, even
in small-size data sets.
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1 INTRODUCTION
Nowadays, wide ranges of applications produce enormous amount
of data that carry valuable information. Since there are no strict stan-
dards established for data; it may be in any size, arbitrary structure,
and available for very restricted time to process. These character-
istics led to the term “Big Data”, which is too large and complex
data to be processed by traditional data management systems. Chal-
lenges that emerged in the Big Data world can be grouped under
“3V” s – volume, variety, and velocity [1]. Recent papers update this
group by adding two extra dimensions, i.e. value and veracity [2].
Volume refers to the amount of data produced by applications. It
may be very large such as Petabytes, especially when we need to
process multimedia-related content. Variety stands for the format of
the data generated by humans or machines, that may be structured
or unstructured. An ideal data management system should be able
to classify data into various categories. Velocity refers to the speed
of the data being generated. In some cases, we may have limited
time to process data and respond to the client, e.g., in a search
engine scenario. In short, one should consider all these challenges
to develop an ideal data management system that deal with Big
Data.

On the other hand, there is an ever-increasing interest for data
mining applications that are designed to extract helpful informa-
tion to make high-impact decisions [3, 4]. Many algorithms have
been developed to explore unknown patterns, that implement vary-
ing techniques such as classification, clustering, prediction, and
association rule mining. Earlier, these methods were designed to
process small-to-medium scale structured data. Hence, these tech-
niques have been improved so that they can handle Big Data. The
term, “Big Data Mining”, stands for the effort to adapt data mining
operations to Big Data.

According to Jaseena et al. [5], Big Data Mining is the capability
of extracting useful information from large datasets and streams of
data, which was not possible before due to its volume, variety, and
velocity. Since we intend to accommodate Data Mining operations
on Big Data, we need to consider potential challenges of scaling the
existing algorithms to operate on high volume data, handling the
heterogeneity of data, and being able to catch up with the velocity
of streaming data. There have been some frameworks to address
these challenges and expose different approaches to successfully
run data mining operations on Big Data, such as Apache Spark
and Hadoop MapReduce. Even though these tools come handy,
there are some pitfalls caused by their architectural limitations.
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One framework may be able to scale algorithms on huge amount of
data but may have undesirably long running times, or vice versa. In
this paper, we aim to identify strengths and pitfalls of Apache Spark
and Hadoop MapReduce in big data mining illustrated through the
classification task on various datasets.

Proposing appropriate methods to measure the performance of
the underlying frameworks is crucial, since we want to identify job-
specific features of the benchmarked tools. In this paper, since we
focus on the classification problems, we define evaluation metrics
in a specialized way accordingly. In particular, as metrics, we study
execution time, i.e., duration of the training phase of the program;
accuracy, i.e., predicted values’ degree of closeness to actual values,
and scalability.

To the best of our knowledge, there is no comprehensive pre-
vious research that studies the classification task on Big Data by
taking task-specific metrics into consideration. Thus, we present
a benchmark to understand the characteristics of these tools and
compare them in terms of scalability, accuracy, and the duration of
training phase. Unlike previous benchmark studies that generate
the same input of varying sizes; we use four different datasets that
present four varying workload sizes.

The remainder of this paper is structured as follows: Section 2
introduces the previous studies on benchmarking Spark andMapRe-
duce, the gaps in the literature, and our contributions. Section 3
discusses the methods that we use in our comparative study such
as frameworks and their utilities, implemented machine learning
techniques, and our benchmarking methodology. In Section 4, we
describe the datasets that we use in our experiments, define eval-
uation metrics to measure the performance of the benchmarked
frameworks, and present the results of our study. Section 5 con-
cludes the paper with possible future directions.

2 RELATEDWORK
Shi et al. [6] provide a benchmark to evaluate major architectural
components in Spark and MapReduce frameworks such as shuffle,
execution model, and caching. They also provide two profiling tools:
(i) ’Execution Plan Visualization’ to correlate task execution plan
with resource utilization for both frameworks; and (ii) ’Fine-grained
Time break-down’ to visually present this correlation.

Samadi et al. [7] employ HiBench [8] to compare Hadoop and
Spark in terms of performance based on criteria including execu-
tion time, speedup, and throughput. Their results show that Spark
outperforms Hadoop, but with the trade-off of higher memory con-
sumption. Another study of Samadi et al. [9] deploy Apache Spark
and Hadoop MapReduce on virtual machines. The comparison cri-
teria is the same as their previous study [7]. They test Word Count
workload with varying sizes of data. Their results show that the per-
formance of the frameworks significantly depends on the use case
implementation. The conclusions that they draw are very similar to
their previous study, i.e., Spark is much more efficient than Hadoop
but requires higher memory allocation because of its architecture
that keeps the data to be processed in node caches.

Ahmed et al. [10] aim to identify the parameters with the highest
impact on the performance of Hadoop and Spark by using trial-
and-error approach to tune them under a variety of experimental

settings. Their evaluation metrics to measure benchmarked frame-
works’ performance are execution time, throughput, and speedup.
Their experimental results show that performance of the frame-
works heavily depends on the workload size and correct parameter
selection. They show that Spark has better performance when the
input size is small, it can get 14 times faster than Hadoop under
certain parameters.

Mavridis et al. [11] conduct a log file analysis to highlight the
similarities and differences between Spark and Hadoop MapReduce.
They use a real very large Apache HTTP Server log file and process
it as blocks of 128 MBs in HDFS. They define some metrics to un-
derstand the impact of parameters such as input workload size, the
number of active nodes, and the type of application. Furthermore,
they record utilization information about CPU, memory, disk, and
network for each node during experiments.

Liu’s research [12] investigates the differences between Spark
and MapReduce along with ideal parameters to improve the effi-
ciency. Common applications such as aggregation, shuffle/sort, and
iterative jobs are represented by workloads of Wordcount, TeraSort,
and K-means, respectively. Their experiments show that Spark per-
forms better than Hadoop for iterative and aggregation jobs, while
Hadoop is a better choice for shuffle/sort kinds of jobs.

Lagwankar et al. [13] study micro-benchmarks like PageRank,
Grep, WordCount, Sort, Matrix Multiplication, and Fast Fourier
Transform (FFT). Clustering applications using Hadoop and Spark
are executed under varying dataset sizes and framework combina-
tions. They also examine the effect of underlying frameworks on the
behavior. They conclude that these micro-benchmarks’ behaviors
depend on the size, pattern, type, and source of input datasets.

Vettriselvi et al. [14] compare Spark and Hadoop on HiBench
for performance analysis. Varying benchmark types are applied to
both frameworks such as TeraSort, WordCount, Logistic Regression,
Gradient Boosting Tree, PageRank, etc. Their experimental results
show that Spark outperforms Hadoop in terms of execution time
and throughput per node.

The above summarized previous benchmark efforts to compare
Hadoop MapReduce and Apache Spark generally fall short in terms
of specifying evaluation metrics that is specific to the studied task.
As an example, the commonly employed execution time metric
often refers to the running time of a program, and it does not con-
sider the predominant components of the studied algorithm. We
define our evaluation metrics by taking the task-specific factors
into consideration. For instance, we refer to execution time to indi-
cate the duration for training the model instead of the execution
of the whole program. We also consider an essential metric for
classification to measure the prediction success of a trained model,
i.e., accuracy. By changing the configuration of the environment
setup, such as adding clusters to the environment, we show the
speedup of each framework associated with scalability. We also
provide composite result tables to show more than one parame-
ter concurrently. Furthermore, workloads that are studied in other
works are often the same dataset generated with varying sizes to
represent different inputs. Nevertheless, in this work, we work with
diverse datasets in varying sizes to imitate real-world scenarios.
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3 METHODS
We benchmark two popular Big Data Analytics tools, namely,
Apache Spark and HadoopMapReduce, for classification task on Big
Data. This section introduces these tools briefly and explains how
they are configured to implement a benchmark environment. Then,
a representative machine learning algorithm, Naive-Bayes Clas-
siffier, that is used for building a classification model on different
datasets, is explained in detail. Finally, our benchmark methodology
is presented.

3.1 Frameworks and Utilities
3.1.1 Apache Spark. Apache Spark is a Big Data Analytics tool for
large-scale data processing. It provides an interface for program-
ming clusters with data parallelism. Spark is able to abstract the
application from the data through a concept of resilient distributed
dataset (RDD), a read-only multiset of data items distributed over a
cluster ofmachines [15].We conduct the first part of our benchmark-
ing experiment with Apache Spark on top of Hadoop Distributed
File System (HDFS) [16].

We utilize the MLlib library of Spark, which is integrated into
Spark with Python language (PySpark) [17]. MLlib exposes some
core data science functionalities with PySpark such as Data Engi-
neering Tools, Machine Learning Algorithms, and Utilities.

3.1.2 Hadoop MapReduce. MapReduce is a programming model
and an associated implementation for processing big datasets with
a parallel and distributed algorithm on clusters [18]. MapReduce
program work in two phases, namely, Map and Reduce. Map tasks
deal with splitting and mapping of data, while Reduce tasks shuffle
and reduce the data.

Hadoop MapReduce is a software framework implementing big
data applications on clusters exploiting the MapReduce phenome-
non. We employ the Mahout utility on top of Hadoop MapReduce,
that offers common machine learning algorithm implementations
[19].

3.2 Naïve-Bayes Classifier
Naïve-Bayes methods are a set of supervised learning algorithms,
reside under linear classifier family’s generative models [20]. Bayes’
theorem states the following relationship, given class variable y
and dependent feature vector x1 through xn:

P(y |x1, . . . ,xn) =
P (y) P(x1, . . . ,xn |y)

P (x1, . . . ,xn)
(1)

Using the naive conditional independence assumption that

P(xi |y,x1, . . . ,xi − 1; xi + 1, . . . , xn) = P(xi |y) (2)

for all i, this relationship is reduced to

P(y |x1, . . . ,xn) =
P (y)

∏
P(xi |y)

P (x1, . . . ,xn)
(3)

Since P(x1, . . ., xn) is constant given the input, we can use the
following classification rule:

y = arдmaxP (y)
∏

P (xi,y) (4)

and here a Maximum A Posteriori (MAP) [21] estimation can be
used to estimate P(y) and P(xi | y); therefore P(y) is the relative
frequency of class y in the training set.

Naïve-Bayes Classifier is implemented in each benchmarking
process of Big Data Tools by using their machine learning utilities.
They are explained in detail for each tool and the source code scripts
are provided in our GitLab repository [22].

3.2.1 MLlib on Spark. MLlib is Apache Spark’s machine learning
library [17]. It implements most of the popular machine learning
algorithms in a scalable manner. MLlib has a support for Naïve-
Bayes Classifier family; Multinomial Naïve-Bayes, Complement
Naïve-Bayes, Bernoulli Naïve-Bayes, and Gaussian Naïve-Bayes.
We use the Multinomial Naïve-Bayes [20] for our implementation
in the benchmark. As application programming interface (API) to
take advantage of MLlib utilities, we use PySpark.

3.2.2 Mahout on MapReduce. Apache Mahout is a distributed lin-
ear algebra framework that implements machine learning algo-
rithms focused primarily on linear algebra [19]. We utilize Ma-
hout’s Naïve-Bayes implementation in our experiments to execute
the classification tasks on Hadoop MapReduce.

3.3 Benchmarking Methodology
Instead of merely sharing the empirical results of the conducted
experiments of our study, we point out some necessary parameters
and features of the benchmarked frameworks. Besides showing
the effect of each configured parameter on performance, we also
provide a compound matrix of parameters to show how compos-
ite parameter groups affect the performance of the frameworks
collectively.

Rather than using existing benchmarking methods such as Hi-
Bench, we create a custom benchmarking environment that does
not restrict us in terms of defining the metrics to measure the per-
formance. Input workloads of the experiments are different datasets
with varying sizes which distinguishes our study than previous
benchmark efforts those generate common datasets with various
sizes such as TeraGen and WordCount.

Another highlighted feature of our benchmark is that it mea-
sures the performance of frameworks in a way that is specific to
the studied task, i.e., classification in our case. We define some
evaluation metrics in Section IV and apply them in our analysis of
the benchmarked frameworks. These specialized metrics help us to
comprehend the effect of different configurations on the success
and performance of classification.

The Hadoop Distributed File System (HDFS) is used as an in-
frastructure for distributed file system in the experiment. Apache
Hadoop’s YARN (Yet Another Resource Negotiator) software is uti-
lized for allocating system resources and scheduling the tasks [23].
Respective core utilities are built on top of YARN to execute data
mining operations. The ecosystem of our experimental environ-
ment is illustrated in Figure 1

4 EVALUATION
4.1 Datasets
Most of the prior works generated varying sizes of the same dataset
to test frameworks with different sizes of workloads. In this work,
we use several different datasets to test our underlying frameworks,
all of which are binary classification datasets. These datasets are
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Figure 1: Ecosystem of the experiment

Table 1: Datasets used in experiment

Dataset Size

HeartBeat 75 KB
URL 400 MB
WebSpam 2 GB
KDD12 21 GB

Figure 2: Environment setup of the experiments on AWS

in LibSVM format [24], for usage of Spark. Then we generate se-
quential files to be processed by Hadoop utilities. Table 1 shows
the employed datasets in our study.

4.1.1 HeartBeat Dataset. HeartBeat dataset from Statlog is a small-
size dataset (75 KB) that consists of 270 instances with 13 attributes
(age, sex, resting blood pressure, etc.) [25]. The main reason for

using such a dataset is to see whether there is an overhead in Big
Data tools while processing small workloads.

4.1.2 URL Reputation Dataset. It is an anonymized 120-day subset
of the ICML-09 URL data [26] containing 2.4 million instances with
3.2 million attributes, which has the size of 400 MB.

4.1.3 WebbSpam Corpus Dataset. This dataset contains web pages
that are created to deceiveWeb users andmanipulate search engines.
It contains 350,000 instances with 16.6 million attributes, and has
the size of 2 GB in total [27].

4.1.4 KDD12 Dataset. It is a binary classification dataset to predict
whether a user is going to follow an item in Tencent Wiebo. It was
originally used in KDD Cup 2012, named as Click Through Predic-
tion Competition. The dataset consists of 149.6 million instances
with 54.6 attributes, and has a total size of 21 GB [28].

4.2 Evaluation Metrics
We define several evaluation metrics to compare the studied frame-
works, Apache Spark and Hadoop MapReduce. These metrics are
execution time, accuracy, and scalability. Each metric is defined in
terms of measuring the efficiency of the classification task. The
way that we employ these metrics to measure the performance is
explained in detail below.

4.2.1 Execution Time. Execution time in our study refers to the
time that it takes to train a model with Naive Bayes Classifier.
We use the timer library of Python for Apache Spark. Hadoop
MapReduce jobs already measure and log the duration of each task
throughout the execution. Note that since we primarily focus on
benchmarking the classification task, we only consider the training
phase of the model in terms of execution time. Other components
of the program such as importing libraries and dataset, the whole
running time of the program are not considered in this research, as
they were widely studied in earlier works as discussed in Section 2.

4.2.2 Accuracy. The accuracy of a data mining algorithm is a way
to measure how successful a model is on classifying a data point
correctly. We split our datasets into two sets, train and test sets

Figure 3: Execution time of the training stage of the frameworks
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Figure 4: Accuracy scores of frameworks in different datasets

Table 2: Execution time of the training phase

ToolDataset Spark MapReduce

Hearbeat (75 KB) 4.48s 35.2s
WebbSpam (400 MB) 8.55s 37.6s
URL (2 GB) 43.59s 40.5s
KDD12 (21 GB) 386.6s 308.8s

(80% and 20%), and then, employ them for training the classifier
model and measure the accuracy, respectively.

4.2.3 Scalability. Scalability is a vital dimension since Big Data
operations are conducted on distributed systems due to its huge vol-
ume. We adjust our cluster configurations to measure the speedup
due to adding new processing units.

4.3 Experimental Setup
As a project environment, we use Amazon’s Elastic MapReduce
(EMR) which is an Amazon Web Services (AWS) tool for Big Data
processing and analysis [29]. m5.xlarge cluster is configured with 1
master and n slave nodes where n ∈ (2,4,8,16). Datasets are uploaded
to the Amazon’s Simple Storage Service (Amazon S3) and retrieved
from there by EMR clusters. Figure 2 depicts our experimental setup.
All the experiments with varying configurations are repeated three
times and the mean values of these records are reported.

4.4 Results
Results are compared for both frameworks, Spark and MapReduce,
and discussed in detail in terms of each evaluation metric. We also
provide combined tables to show the effect of more than one metric
at a time.

4.4.1 Execution Time. Experiments show that Spark is much faster
than Hadoop during the training phase. As the workload size gets
larger, execution time grows linearly for Spark. A similar execution
time growth pattern is observed for Hadoop MapReduce, but with
much longer time durations. Consistent with the reported results in

Table 3: Accuracy scores of the frameworks

ToolDataset Spark MapReduce

Heartbeat (75 KB) 69.96% 71.8%
WebbSpam (400 MB) 65.73% 66.48%
URL (2 GB) 93.5% 98.83%
KDD12 (21 GB) 98.7% 99.5%

[8], Spark’s performance degrades when the input size gets larger.
This is because the way Spark reads the input files and distributes
over RDDs which creates features that reside over distributed clus-
ters’ memories and dependent to each other during the training
phase. MapReduce overcomes this by preparing the vectors from
sequential input files during the preprocessing stage, and each clus-
ter exploit these vectors during the training stage. Figure 3 and
Table 2 show how input dataset size affects the training time of the
classification task.

4.4.2 Accuracy. Accuracy scores does not follow a consistent com-
parison pattern across different datasets. Experiments show thatMa-
hout’s Naïve-Bayes Classifier model having better accuracy scores
than MLlib. Figure 4 and Table 3 show the change in accuracy for
different datasets.

4.4.3 Scalability. Increasing the number of nodes is expected to
reduce the amount of work on individual computing units. Experi-
ments show that adding more clusters to the system significantly
boosts Spark’s performance. However, MapReduce does not achieve
that much improvement in performance as we add new clusters
to the environment. The reason is that Hadoop’s operations are
input/output bound because of its disk dependency. Adding more
clusters to the system means more input/output operations made
by extra nodes on the shared disk. Table 4 shows the speedup of
each framework with different node and input configurations.
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Table 4: Speedup of frameworks with varying number of
clusters

Number of Slave
Clusters

Input Size Spark MapReduce

2 2 GB
400 MB

42s
8s

41s
42s

4 2 GB
400 MB

28s
6s

42s
41s

8 2 GB
400 MB

19s
4s

42s
38s

16 2 GB
400 MB

16s
3s

43s
39s

5 CONCLUSION AND FUTUREWORK
In this paper, we present a benchmarking study to compare the
performance of Apache Spark and Hadoop MapReduce on a com-
mon data mining task, i.e. classification. Four different data sets are
used to represent varying sizes of input workloads from different
domains. The studied frameworks are compared in the aspects of
execution time, accuracy, and scalability. Experiments demonstrate
that Spark is about 5 times faster than Hadoop in terms of the execu-
tion time of training phase. This rate is proportional to the number
of clusters in the system, since Spark scales better with increasing
number of nodes in the cluster. However, the performance of Spark
degrades as the input workload gets larger. Our results show that
Hadoop provides consistently better classification accuracy figures
than Spark.

As part of our future work, we would like to investigate behavior
of the employed systems with larger datasets. Furthermore, other
data mining tasks like regression, clustering, etc. could be studied to
observe the impact of different data mining tasks on performance.
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